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We consider the Brownian motion of a colloidal particle in a symmetric, periodic potential, whose potential
barriers are subjected to temporal oscillations. Experimentally, the potential is generated by two arrays of
trapped, negatively charged particles whose positions are periodically modulated with light forces. This results
in a structured channel geometry of locally variable width. If all potential barriers are oscillating in synchrony,
a resonancelike peak of the effective diffusion coefficient upon variation of the oscillation period is observed.
For asynchronously oscillating barriers, the particle can be steered with great reliability into one or the other
direction by properly choosing the oscillation periods of the different barriers along the channel.
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I. INTRODUCTION

Brownian motion in quasi-one-dimensional channels is a
recurrent theme in a variety of different contexts, such as
molecular transport through cell membranes �1�, single-file
diffusion �2�, and transport by various kinds of noise-assisted
rectification, pumping, or ratchet effects �3�. Here, we intro-
duce a transport mechanism for a Brownian particle in a
temporally modulated channel that is closely related to the
above examples but still fundamentally different from all
previous studies as far as the basic physical principles are
concerned. Specifically, we demonstrate how a particle can
be directed inside a channel with high fidelity toward one or
the other end by subjecting the cross section of the channel
to time-dependent, but spatially symmetric modulations.

The plan of the paper is as follows: We start with the
description and characterization of the experimental system.
Next, we focus on the case of synchronously oscillating po-
tential barriers within the channel with particular emphasis
on the phenomenon of resonant activation and the effective
diffusion coefficient. In the case of asynchronously oscillat-
ing barriers, we demonstrate systematic particle transport
whose direction can be controlled by a suitable choice of the
oscillation periods. Finally, we point out the main differences
and similarities with the above-mentioned previously estab-
lished transport mechanisms.

II. EXPERIMENTAL SYSTEM

As a sample cell we used a thin glass cuvette which con-
tained an aqueous suspension of negatively charged silica
beads with 2r�1.57 �m diameter, interacting via a screened
Yukawa potential �4�. Due to gravity and the negatively
charged silica plates forming the sample cell the particle mo-
tion is confined to a horizontal plane where they undergo
Brownian motion �5�. In contrast to earlier experiments,
where static one-dimensional channels were achieved by
lithographic methods �6� or continuously scanned optical
tweezers �7�, here we are interested in the effect of fluctuat-
ing channels on the behavior of a probe particle located in-
side the channel. Therefore, we followed another approach to
create channels whose geometry can be dynamically modu-

lated: with a scanning optical tweezer based on an acousto-
optical deflection system �for details see �8�� we create two
parallel arrays �distance b�8.5 �m� of equally spaced �a
�3.9 �m� laser spots which serve as narrow, steep optical
traps for colloidal particles �Fig. 1�a��. Once the traps are
filled with particles �channel particles�, they form a channel-
like structure whose spatial and temporal behavior can be
conveniently controlled. The trapping strength of the channel
particles is about 30kBT which is considerably larger than the
electrostatic interaction of adjacent particles. Therefore the
channel geometry is entirely determined by the position of
the laser tweezers.

In order to study the effect of channel fluctuations on the
motional behavior of a probe particle located inside the chan-
nel, we subject the channel particles to a periodic modulation
in the y direction with period � and amplitude 0.5 �m �for
simplicity, we apply those oscillations only to one channel
wall while the other wall remains at rest�. Depending on
whether all channel particles are modulated in phase and
with the same period �, the resulting time-dependent poten-
tial for the probe particle upon the channel modulation leads
to symmetric or asymmetric spatial potentials �Fig. 1�b��.
Due to the strong electrostatic interaction, the motion of the
probe particle is to good approximation one dimensional.
Therefore, in the following only the motional behavior along
the x direction will be considered.

In the following we investigate how the motional behav-
ior of a single probe particle is affected by different time-

FIG. 1. �Color online� �a� Snapshot of colloidal particles which
form a one-dimensional channel for another free particle �arrow�.
The channel particles are localized with a scanning optical tweezer
which allows one to modulate the geometry of the channel. �b�
Sketch of the instantaneous effective potential V�x , t� acting on the
probe particle along the x axis due to its interaction with the channel
particles.
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dependent fluctuations of the channel geometry. For a single
experimental run, the probe particle is first positioned with
an optical tweezer in the center of the channel and then re-
leased. The particles are imaged with an inverted microscope
onto a charge coupled device �CCD� camera, and the trajec-
tories are monitored by means of digital video microscopy.
To avoid boundary effects, in the following we only consider
the behavior of the probe particle in the central channel re-
gion where boundary effects can be neglected. Once the
probe particle leaves the channel, it is reset back to the chan-
nel center. Because the channel modulation phase was not
reset after each initialization, this procedure also leads to a
phase averaging.

III. SYNCHRONOUSLY OSCILLATING BARRIERS

A. Resonant activation

We start with the case where the channel particles are
subjected to a synchronous motion with the same period �,
resulting in an effective potential V�x , t� which is at any
given time instant t spatially periodic and symmetric �apart
from boundary effects at the channel ends� and whose poten-
tial barriers switch between a “high” and a “low” value
�compared to kBT� after every half-period � /2. A typical tra-
jectory x�t� of the probe particle is given in Fig. 2�a�.

In order to evaluate the averaged jumping time of a par-
ticle between neighboring potential wells, we first applied
suitable thresholds to map the particles trajectory to a system
with discrete states �green dashed line in Fig. 2�a��. The ver-
tical lines describe the modulation of the channel. Solid �dot-
ted� lines indicate the time where the channel switches to a
period with high �low� potential V�x , t�. Most of the jumps
between individual minima of V�x , t� occur when the channel
switches from the low to the high barrier phase. From this,
we determined the mean first passage time �MFPT� T as a
function of the oscillation period � �Fig. 2�b��. The pro-
nounced minimum of T at about �=35 s is closely related
�though not identical in detail� to the resonant activation
effect �9� and explained as follows:

During the first half-period � /2 the barriers are “low”
�compared to kBT� and the particle roughly exhibits free ther-
mal diffusion with the experimentally determined diffusion
coefficient D�0.24 �m2/s �5�. Hence, starting from a po-
tential minimum, the necessary time to travel the distance
a /2 to one of the adjacent maxima is about �a /2�2 /2D. If at
this moment the barrier turns to its “high” value, the particle
can cover the remaining distance a /2 to the next minimum
by drifting down along the potential slope. Assuming that the
drift is much faster than the diffusion time, the cooperation
of diffusion and deterministic drift leads to a maximal reduc-
tion of the MFPT T if the duration of the low barrier phase
� /2 matches the diffusion time �a /2�2 /2D. In other words,
the minimum of T is predicted to roughly occur at

�min � a2/4D . �1�

For our experimental parameter values a�3.9 �m and D
�0.24 �m2/s this yields �min�15.8 s. In face of the above
very rough estimate and the fact that even in the “low” state

the particle does not diffuse entirely freely, this is in reason-
able agreement with the experimentally observed value �min
�35 s in Fig. 2�b�. Since the particle reaches the next mini-
mum at the end of the “high” barrier phase only with a prob-
ability of roughly 1/2 �with the same probability it returns to
the same minimum from where it started out�, we obtain

T��min� � 2�min, �2�

which is in good agreement with Fig. 2�b�. For very fast
oscillations, the particle experiences the time-averaged po-
tential V0�x� �10�. Hence, a lower estimate for T is the free

FIG. 2. �Color online� �a� Typical raw trajectory x�t� of the
probe particle for synchronously oscillating channel particles in Fig.
1�a�. The trajectory is mapped to a discrete-state system �green
dashed line� by applying suitable thresholds. From the time inter-
vals represented by the horizontal parts of the green dashed line we
obtain the first passage times from one potential minimum to the
next. By averaging, one obtains the mean first passage time �MFPT�
T. To avoid deviations from spatial periodicity, transitions between
minima very close to the channel ends are not included in the av-
erage. The vertical lines describe the modulation of the channel.
Solid �dotted� lines indicate the time where the channel switches to
high �low� potential V�x , t�. �b� Experimentally determined MFPT T
for various oscillation periods �.
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diffusion time a2 /2D over one spatial period a. The same
lower estimate obviously also applies for very slow oscilla-
tions. In other words, both for large and small � the MFPT T
is at least twice as large as for �=�min, again in agreement
with Fig. 2�b�. Without going into the details, one can fur-
thermore see that this mechanism works best in the sense
that the minimum of T will be most pronounced if the tran-
sitions across the high barriers are negligibly rare, while the
low barriers are of negligible height compared to kBT. Both
requirements are roughly but not perfectly met by the actual
experiment in Figs. 1 and 2.

In addition to the minimum, in Fig. 2�b�, we also observe
a maximum of T at ��24 s. Though a maximum may appear
reminiscent of a special type of resonant activation unraveled
in �11�, this point needs further investigation which is be-
yond the scope of this paper.

B. Resonant enhancement of diffusion

In this section we are interested in the effective diffusion
coefficient Def f of the probe particle in a synchronously os-
cillating potential V�x , t�. It is directly obtained from the par-
ticle trajectory x�t� according to

Def f ª lim
t→�

�x2�t�� − �x�t��2

2t
. �3�

Without oscillations—i.e., for a static channel of width
8.5 �m—we experimentally found Def f

static�0.16 �m2/s,
which is, as expected �12�, considerably smaller than the free
diffusion coefficient D�0.24 �m2/s �5�. The almost instan-
taneous transitions between neighboring potential minima in
Fig. 2�a� indicate that the particle dynamics can be described
in good approximation as a sequence of independent hopping
events between discrete states. The corresponding hopping
rate � between neighboring states then readily follows as the
inverse of the MFPT T. Moreover, for the effective diffusion
coefficient �3� in an a-periodic hopping dynamics one recov-
ers the common relation Def f =�a2. In other words, we obtain
the following approximative expression for the effective dif-
fusion coefficient:

Def f = a2/T; �4�

see Fig. 3. For one oscillation period—namely, �=30 s, we
also have carried out a quite time-consuming direct experi-
mental measurement of the effective diffusion coefficient �3�,
yielding Def f =0.19 �m2/s. Comparison with Fig. 3 implies
that our above indirect results for Def f are in excellent agree-
ment and thus the analytical approximation is indeed appli-
cable.

According to Eq. �4� or by comparison of Figs. 2�b� and 3
we see that the “resonant activationlike” minimum of the
MFPT translates into an equivalent “resonancelike” peak of
the effective diffusion coefficient in an array of oscillating
barriers, which can be controlled by the period � of those
oscillations. The basic physical mechanism for this selective
diffusion enhancement is once again the above-discussed co-
operation of free thermal diffusion and deterministic relax-
ation, somewhat similar to the theoretical ideas in �13�.

The maximal value of Def f is almost identical with the
free diffusion coefficient D�0.24 �m2/s �5�, but there can
be little doubt that for other experimental parameters than in
Fig. 3 one could also reach effective diffusion coefficients
considerably larger than D. Furthermore, instead of varying
the oscillation period �, one could fix � to its maximum value
in Fig. 3 and instead vary some other quantity—for instance,
the particle radius �and hence D �5��. Upon variation of this
quantity, one will again find a “resonancelike” maximum of
the effective diffusion coefficient. The corresponding differ-
ence in the diffusion coefficient for different particle species
could be readily exploited to separate them from each other:
Starting with a homogeneous mixture of particles, those with
large effective diffusion coefficients would quickly “evapo-
rate” out of the much more inert bulk of particles with low
Def f.

For very small modulation times � the effective diffusion
coefficient in Fig. 3 approaches quite closely the above-
mentioned finding of Def f

static�0.16 �m2/s for a static peri-
odic potential V0�x� corresponding to the average width b
=8.5 �m of the channel in Fig. 1�a�. This indicates that the
particles indeed effectively experience the average potential
V0�x� for sufficiently fast oscillations, in spite of the fact that
the potential is a nonlinear function of the channel width b,
and hence the average potential in general need not agree
very well with the static potential corresponding to the aver-
age width b=8.5 �m.

IV. DIRECTED TRANSPORT FOR INCOHERENTLY
OSCILLATING BARRIERS

In this section we consider the case where all oscillating
channel particles are jumping back and forth with different
periods �, but still identical amplitudes �0.5 �m�. Specifi-
cally, we focus on the example that the period � is increasing
in constant steps �� when proceeding from one channel par-
ticle to its right neighbor in Fig. 1�a�. Hence, the resulting
potential V�x , t� acting on the probe particle in Fig. 1�a� ex-
hibits faster and faster potential barrier oscillations as the
spatial argument x increases.

FIG. 3. Theoretical approximation �4� for the effective diffusion
coefficient Def f vs oscillation period � for the same system as in
Fig. 2.
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As detailed in Sec. II, the probe particle is repeatedly
initialized in the middle of the channel and monitored until it
leaves the channel either at the left or the right end. Figure 4
depicts our experimental results for the quantities Nl�t� and
Nr�t�, defined as the number of realizations which have left
the channel until time t through the left and right ends, re-
spectively. Hence, at every time instant t at which a realiza-
tion exits to the left �right�, Nl�t� �Nr�t�� are increased by 1.
Accordingly, the final values Nl,r�tf� are the total number of
exits to the left and right, respectively. Hence, Nl�tf�+Nr�tf�
are the total number of experimental realizations and
Nl�tf� /Nr�tf� is the relative probability for exiting left com-
pared to right—i.e., a suitable quantifier of how reliably our
channel device directs the particles in one or the other direc-
tion. In Fig. 4 the depicted time range slightly exceeds the
value tf, beyond which Nl,r�t� will not change any more.

From Fig. 4 it is immediately obvious that the Brownian
motion of a colloidal particle can be directed with high fi-

delity either to the right or left end of the channel by suitably
chosen oscillation periods �. To understand this behavior, it
is important to recall that the MFPT depends on the oscilla-
tion period and thus changes along the channel. In the case
of Fig. 4�a�, the mean first passage times over the oscillating
potential barriers increases from left to right according to
Fig. 2�b�. Within the hopping model developed in Sec. III B,
this means that for every given discrete state �representing a
potential minimum�, transitions to the adjacent state to the
left are more likely than to the right. Hence, a particle start-
ing in the middle of the channel will preferably move to the
left. Similarly, in the case of Fig. 4�b�, the mean first passage
times increases from the right to the left and thus results in a
preferential motion to the right.

According to the above-mentioned discrete-state model,
the situation is essentially equivalent to the motion in a static
potential landscape with equally spaced minima but with
static potential barriers between the minima which are either
increasing �from left to right�, corresponding to the case in
Fig. 4�a� or decreasing in the situation of Fig. 4�b�.

We also performed measurements with broader channels
�b=9–10 �m; cf. Fig. 1�a��, resulting in a less-pronounced
minimum of the MFPT than in Fig. 2�b� and, in agreement
with the above theoretical prediction, a reduced reliability to
steer the particles to the right or left channel end by suitably
choosing the oscillation periods �.

While the above equivalent static potential picture is use-
ful to approximately describe the system theoretically, the
actual system is different in the following important respect:
All potential barriers are sampling the same sequence of con-
figurations; only their oscillation period � is different. Hence,
there is no need to change the potential landscape in order to
invert the directionality of the channel; one only has to adapt
the periods � of the oscillations.

Upon increasing the number of oscillating channel par-
ticles, the oscillation frequencies and hence the MFPT will
differ less and less between adjacent channel particles. As a
consequence, a continuous description in terms of a space-
dependent effective diffusion coefficient will be applicable.
It seems plausible that the particles will still preferably dif-
fuse into the direction with large effective diffusion coeffi-
cient. However, the actual times to reach one of the ends of
the device will obviously diverge. The quantitative details
are beyond the scope of our present theoretical study, and
with respect to the experiment, this limit is of minor interest.

In the case of random instead of periodic potential modu-
lations, we still expect a resonant-activation-type minimum
of the MFPT upon variation of the characteristic time scale
of the potential modulations �9� similar to Fig. 2. As a con-
sequence, the effects in Figs. 3 and 4 should qualitatively
remain unchanged.

V. CONCLUSIONS

In this work we have demonstrated the control of effective
diffusion �Sec. III B� and directed transport �Sec. IV� of col-
loidal Brownian particles in a channel geometry whose width
is subjected to temporal oscillations with space-dependent
oscillation periods. Instead of modifying the diffusion or the

FIG. 4. �Color online� Total number of realizations Nl�t� �red,
upper curve in �a�, lower curve in �b�� and Nr�t� �blue, lower curve
in �a�, upper curve in �b�� which have left the channel until time t
through the left and right ends, respectively, starting at time t=0 in
the middle of the channel. �a� Channel consisting of 11 oscillating
channel particles with periods �=30,33,36, . . . ,60 s �from left to
right in Fig. 1�a��. �b� Twelve oscillating channel particles with
periods �=16,18,20, . . . ,38 s.
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directed motion of one given particle species by properly
changing the oscillation periods, as discussed in this paper,
one can also modify these transport properties by using dif-
ferent particle species but keeping the channel oscillation
parameters fixed. This opens the perspective of separating
different particle species by injecting both species in the
mixture into the channel and either by letting the highly dif-
fusive species evaporate out of the channel or by collecting
the two different species at the two channel ends.

We finally point out that the basic principle of our present
transport mechanism is quite different from a particle pump
between two reservoirs and also from directed Brownian mo-
tion due to ratchet effects �3,14�. In both these cases, particle
transport only occurs if it passes over all potential barriers
within the channel. Because within our discrete state model
introduced in Sec. III B the transition rates over every given
potential barrier are the same in either direction, this situa-
tion can be also described by considering equivalent static

potential barriers. In this situation, however, it is obvious that
no particle transport occurs, in agreement with the second
law of thermodynamics. The situation considered here is
somewhat different, because particles are injected into the
middle of the channel and thus may proceed to one channel
end without ever passing over all �in particular very high
potential barriers�. This eventually results in a net transport
of particles in one direction.

Besides the above-mentioned potential applications for
the purpose of particle sorting our present system may also
be of interest in the context of active transport in biophysical
systems like axons or ion pumps �1�.
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